
CHAPTER 9 Mass and Mass-Related Parameters

i	IA 1																	VIIIA 2
1	H 1.0079	IIA											IIIA	IVA	VA	VIA	VIIA	He 4.003
ĺ	3	4											5	6	7	8	9	10
2	Li	Be											В	С	Ν	0	F	Ne
-	6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
	11	12											13	14	15	16	17	18
3	Na	Mg			100000	000100	1000000000000		VIIIB		10.000	1000000	Al	Si	Р	S	Cl	Ar
~	22.990	24.305	IIIB	IVB	VB	VIB	VIIB	r	1		IB	IIB	26.982	28.086	30.974	32.066	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
~	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.845	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.8
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
	85.468	87.62	88.906	91.224	92.906	95.94	98	101.07	102.906	106.42	107.868	112.411	114.82	118.71	121.76	127.60	126.905	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
ॅ	132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	209	210	222
	87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
854C	223	226.025	227.028	261	262	263	262	265	266	269	272	277						
															•			
			Lanth	anida	58	59	60	61	62	63	64	65	66	67	68	69	70	71
					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			ser	ies	140.115	140.908	144.24	145	150.36	151.964	157.25	158.925	162.5	164.93	167.26	168.934	173.04	174.967
			Anti		90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Acti		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			ser	ies	232.038	231.036	238.029	237.048	244	243	247	247	251	252	257	258	259	262

Figure 9.1 The chemical elements to date (2001).

Mass - derived parameters

- Density = mass/volume
- Specific gravity = density/density of water at 4°C
- Specific volume = volume/mass = 1/ density
- Specific weight = weight/volume = density * g (g = acceleration due to gravity)

Material	Density (kg/m ³)	Specific Gravity	Specific Weight (N/m ³)
		• •	· · · ·
Aluminum	2740	2.74	26,880
Asphalt	2110	2.11	20,700
Cement	1920	1.92	18,840
Clay	1000	1.00	9810
Fireclay brick	1790@100°C	1.79	17,560
Glass (soda lime)	2470	2.47	24,230
Glass (lead)	4280	4.28	41,990
Glass (Pyrex)	2230	2.23	21,880
Iron (cast)	7210	7.21	70,730
Iron (wrought)	7700@100°C	7.70	75,540
Paper	930	0.93	9120
Steel (mild)	7830	7.83	76,810
Steel (stainless 304)	7860	7.86	77,110
Wood (ash)	690	0.69	6770
Wood (mahogany)	550	0.55	5400
Wood (oak)	750	0.75	7360
Wood (pine)	430	0.43	4220

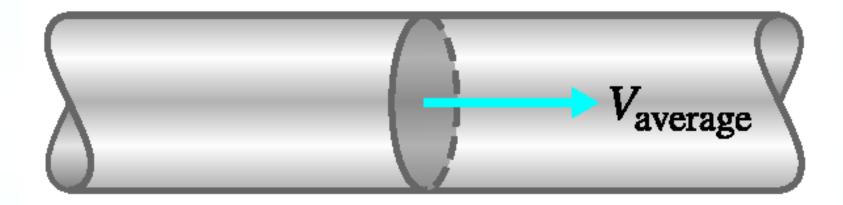
TABLE 9.1Density, Specific Gravity, and Specific Weight of Some Materials
(at room temperature or at the specified temperature)

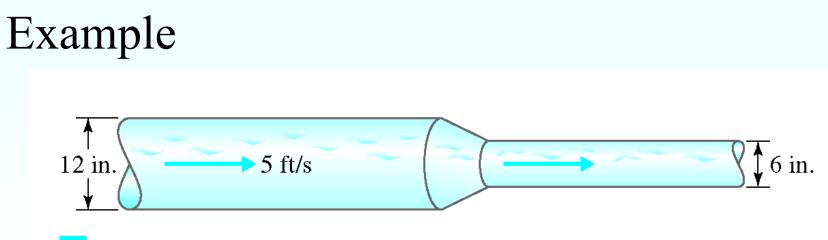
Fluids			
Standard air	1.225	0.0012	12
Gasoline	720	0.72	7060
Glycerin	1260	1.26	12,360
Mercury	13,550	13.55	132,930
SAE 10 W oil	920	0.92	9030
Water	1000@4°C	1.0	9810

Volume flow rate

• Engineers design flow-measuring devices to determine the amount of material or a substance flowing through a pipeline in a processing plant.

• They calculate it by:


Volume flow rate = volume/time


= area x length/time

= area x (average velocity)

The latter formula is practically simpler to determine

• Common units are: m³/s, m³/h, L/s, ml/s, ft³/s (cfs), gal/min (gpm), gal/day (gpd)

Figure 8.10 The piping system of Example 8.4.

• What is the volume flow rate of the water in the piping system? Express the answer in ft³/s, gpm and L/s. what is the average speed of water in the 6-in diameter pipe?

Example

volume flow rate = (average velocity)(cross - sectional area)

$$Q = 5\left(\frac{ft}{s}\right)\frac{\pi}{4}\left(12 in \cdot \frac{1ft}{12 in}\right)^2 = 3.926 ft^3/s$$

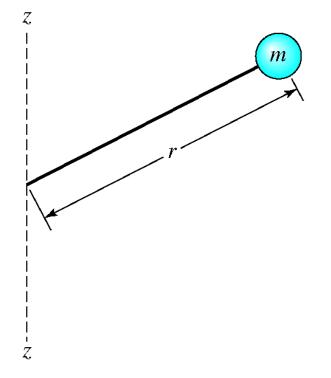
$$Q = 3.926\left(\frac{ft^3}{s}\right)\left(\frac{7.48 gal}{1 ft^3}\right)\left(\frac{60 s}{1 min}\right) = 1762 gpm$$

$$Q = 3.926\left(\frac{ft^3}{s}\right)\left(\frac{28.3168 L}{1 ft^3}\right) = 111.2 L/s$$
average speed = $Q/cross - sectional area$

$$3.926 c/s$$

$$=\frac{3.926}{\frac{\pi}{4}(0.5ft)^2}=20\ ft/s$$

9-8


Mass flow rate

- Mass flow rate
 - = (displaced mass)/time
 - = (volume/time)(mass/volume)
 - = volume flow rate * density

Mass moment of inertia

• It is a measure of how hard it is to rotate something (with respec its center of rotation)

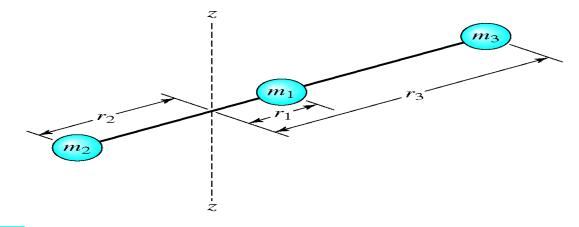
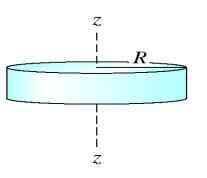

• I
$$_{z-z} = m r^2$$

Figure 9.2 The mass moment of inertia of a point mass.

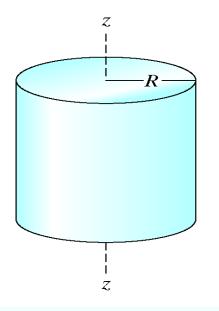
Mass moment of inertia

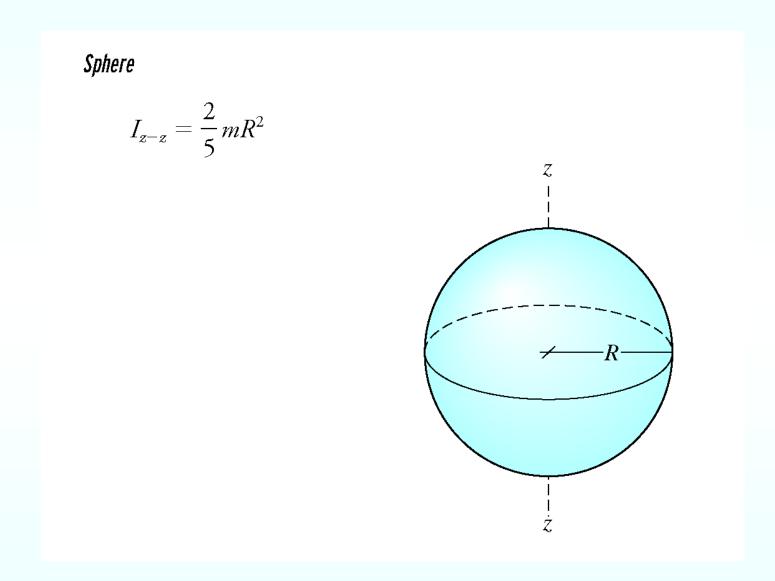
• $I_{z-z} = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2$


Figure 9.3 Mass moment of inertia of a system consisting of three point masses.

Mass moment of inertia

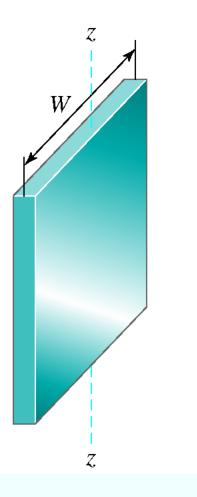
- For a body of any shape:
- I $_{z-z} = \int r^2 dm$


Disk


$$I_{z-z} = \frac{1}{2} m R^2$$

Circular Cylinder

$$I_{z-z} = \frac{1}{2} mR^2$$



9-14

Thin Rectangular Plate

$$I_{z-z} = \frac{1}{12} m W^2$$

- Determine the mass moment of inertia of a steel shaft (around its axis) that is 2m long and has a diameter of 10 cm. the density of steel is 7860kg/m³.
- Answer: 0.154Kg m²

Momentum

•
$$\vec{L} = m \vec{V}$$

• A man of mass 70 Kg running at 10m/s has a momentum of 700 Kg m/s

Momentum

- A bullet moving at 1000m/s, having a mass of 4g. Its momentum is 4Kg m/s
- It has a high momentum due to its speed. That is why it can penetrate objects and do harm. (This is also due to its small contact area)

- Compare linear momentum of :
 - Person 80 kg ; 3m/s
 - Car 2000 kg ; 30 m/s
- Answer:
 - Person: 240 kg m/s
 - Car : 60 000 kg m/s

Conservation of mass

• Rate of accumulation = rate of fluid – rate of fluid of fluid entering leaving

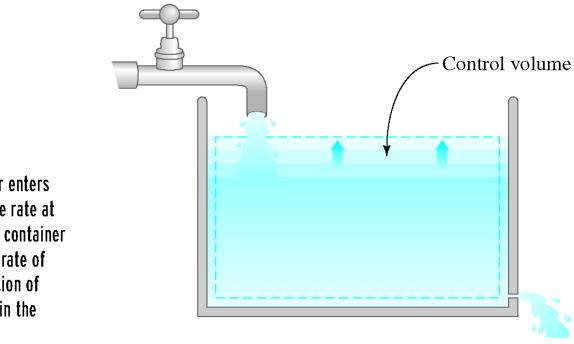
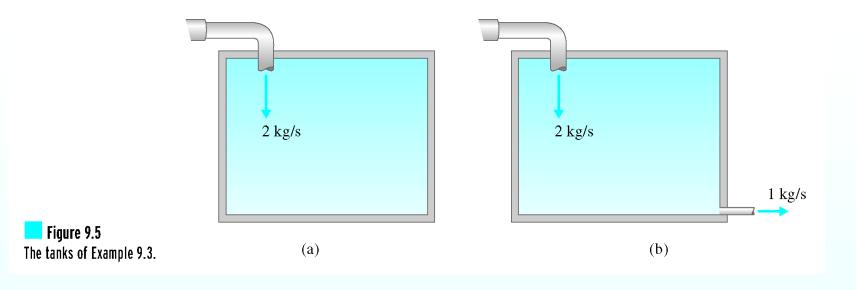



Figure 9.4 The rate at which water enters the container minus the rate at which water leaves the container should be equal to the rate of accumulation or depletion of the mass of water within the container.

• How much water is stored after 5 min in each of the tanks? How long will it take to fill the tanks?

- Density of water 1000kg/m³
- Tank 1:
 - rate of water entering 2 kg/s
 - Volume of tank: 12 m³
- Tank 2:
 - rate of water entering 2 kg/s
 - Volume of tank: 12 m³
 - Rate of water leaving :1 kg/s